首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2200篇
  免费   242篇
  国内免费   192篇
化学   1659篇
晶体学   26篇
力学   94篇
综合类   12篇
数学   217篇
物理学   626篇
  2023年   39篇
  2022年   37篇
  2021年   58篇
  2020年   77篇
  2019年   96篇
  2018年   68篇
  2017年   50篇
  2016年   91篇
  2015年   82篇
  2014年   109篇
  2013年   149篇
  2012年   179篇
  2011年   199篇
  2010年   126篇
  2009年   108篇
  2008年   141篇
  2007年   135篇
  2006年   118篇
  2005年   116篇
  2004年   68篇
  2003年   53篇
  2002年   69篇
  2001年   45篇
  2000年   33篇
  1999年   32篇
  1998年   30篇
  1997年   29篇
  1996年   32篇
  1995年   32篇
  1994年   21篇
  1993年   18篇
  1992年   30篇
  1991年   12篇
  1990年   23篇
  1989年   17篇
  1988年   15篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   14篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1975年   3篇
  1962年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有2634条查询结果,搜索用时 15 毫秒
11.
12.
In this paper, graphene oxide/polyethylene glycol (GO/PEG) composite water-based lubricant was prepared by an ultrasonic dispersion method, and characterized and analyzed by Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The suspension performance of GO/PEG composite water-based lubricant in water was verified by static sedimentation and centrifugation, and then, the prepared GO/PEG composite water-based lubricant was added into 304 stainless steel and 6061 aluminum alloy, and the coefficient of friction (COF) curve, average COF value, average wear rate, corresponding photomicrographs of balls and disks after wear, and energy-dispersive spectrometer (EDS) elemental analysis were used to illustrate the lubrication effect and lubrication mechanism. The results show that the GO/PEG composite water-based lubricant possesses excellent suspension ability in water, and the average COF value and wear rate of GO/PEG composite water-based lubricant are reduced by 78.8% and 88.8%, respectively, compared with water lubrication. The excellent lubrication effect of GO/PEG composite water-based lubricant can effectively reduce the cold-welding and adhesive wear phenomenon, mainly because GO/PEG composite water-based lubricant first fills the uneven surface of friction mating to form a high-quality lubricating film and then because of the special space structure of GO and the low shear between GO layers and the synergistic lubrication effect of GO/PEG.  相似文献   
13.
The present study is aimed at the exploration of achievable improvements for CrVI ex situ and in situ water remediation by using novel naked colloidal maghemite (γ‐Fe2O3) nanoparticles (surface active maghemite nanoparticles, SAMNs). The reliability of SAMNs for CrVI binding and removal was demonstrated, and SAMN@CrVI complex was characterized, as well as the covalent nature of the absorption was unequivocally proved. SAMNs were structurally and magnetically well conserved after CrVI binding. Thus, in consideration of their affinity for CrVI, SAMNs were exploited in a biological model system, mimicking a real in situ application. The assay evidenced a progressive reduction of revertant colonies of Salmonella typhimurium TA100 strain, as maghemite nanoparticles concentration increased, till the complete suppression of CrVI mutagen effect. Finally, an automatic modular pilot system for continuous magnetic removal and recovery of CrVI from water is proposed. SAMNs, thanks to their colloidal, binding, and catalytic properties, represent a promising tool as a reliable nanomaterial for water remediation by CrVI.  相似文献   
14.
Despite of great advances of phospholipids and liposomes in clinical therapy, very limited success has been achieved in the preparation of smart phospholipids and controlled-release liposomes for in vivo drug delivery and clinical trials. Here we report a supramolecular approach to synthesize novel supramolecularly engineered phospholipids based on complementary hydrogen bonding of nucleosides, which greatly reduces the need of tedious chemical synthesis, including reducing the strict requirements for multistep chemical reactions, and the purification of the intermediates and the amount of waste generated relative more traditional approaches. These upgraded phospholipids self-assemble into liposome-like bilayer structures in aqueous solution, exhibiting fast stimuli-responsive ability due to the hydrogen bonding connection. In vitro and in vivo evaluations show the resulted supramolecular liposomes from nucleoside phospholipids could effectively transport drug into tumor tissue, rapidly enter tumor cells, and controllably release their payload in response to an intracellular acidic environment, thus resulting in a much higher antitumor activity than conventional liposomes. The present supramolecularly engineered phospholipids represent an important evolution in comparison to conventional covalent-bonded phospholipid systems.  相似文献   
15.
In this paper, characterizations of the embeddings between weighted Copson function spaces \(Co{p_{{p_1},{q_1}}}\left( {{u_1},{v_1}} \right)\) and weighted Cesàro function spaces \(Ce{s_{{p_2},{q_2}}}\left( {{u_2},{v_2}} \right)\) are given. In particular, two-sided estimates of the optimal constant c in the inequality
$${\left( {\int_0^\infty {{{\left( {\int_0^t {f{{\left( \tau \right)}^{{p_2}}}{v_2}\left( \tau \right)d\tau } } \right)}^{{q_2}/{p_2}}}{u_2}\left( t \right)dt} } \right)^{1/{q_2}}} \leqslant c{\left( {\int_0^\infty {{{\left( {\int_t^\infty {f{{\left( \tau \right)}^{{p_1}}}{v_1}\left( \tau \right)d\tau } } \right)}^{{q_1}/{p_1}}}{u_1}\left( t \right)dt} } \right)^{1/{q_1}}},$$
where p1, p2, q1, q2 ∈ (0,∞), p2q2 and u1, u2, v1, v2 are weights on (0,∞), are obtained. The most innovative part consists of the fact that possibly different parameters p1 and p2 and possibly different inner weights v1 and v2 are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
  相似文献   
16.
In this study, proper orthogonal decomposition (POD) method is applied to diffusion–convection–reaction equation, which is discretized using space–time discontinuous Galerkin (dG) method. We provide estimates for POD truncation error in dG-energy norm, dG-elliptic projection, and space–time projection. Using these new estimates, we analyze the error between the dG and the POD solution, and the error between the exact and the POD solution. Numerical results, which are consistent with theoretical convergence rates, are presented.  相似文献   
17.
Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues such as fast algorithms, fully parallel distributed feasibility and limited internal memory. This research designs a fast fully parallel and distributed algorithm using limited internal memory to reach high NMF performance for large datasets. Specially, we propose a flexible accelerated algorithm for NMF with all its \(L_1\) \(L_2\) regularized variants based on full decomposition, which is a combination of exact line search, greedy coordinate descent, and accelerated search. The proposed algorithm takes advantages of these algorithms to converges linearly at an over-bounded rate \((1-\frac{\mu }{L})(1 - \frac{\mu }{rL})^{2r}\) in optimizing each factor matrix when fixing the other factor one in the sub-space of passive variables, where r is the number of latent components, and \(\mu \) and L are bounded as \(\frac{1}{2} \le \mu \le L \le r\). In addition, the algorithm can exploit the data sparseness to run on large datasets with limited internal memory of machines, which is is advanced compared to fast block coordinate descent methods and accelerated methods. Our experimental results are highly competitive with seven state-of-the-art methods about three significant aspects of convergence, optimality and average of the iteration numbers.  相似文献   
18.
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.  相似文献   
19.
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3NH3PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3NH3PbI3/C60 interface with the modification of PbI2 as compared to that without PbI2. Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3NH3PbI3/C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.  相似文献   
20.
The study focused on determining the effect of acidic and basic cold activation on hydrochar (HC) for the removal of methyl orange (MO). HC was prepared by hawthorn seeds (HS) under hydrothermal carbonization. HC was cold-activated with HCl and NaOH, respectively, and they were grafted with aminopropyltriethoxysilane (APTES) and protonated to obtain AHC-N+ (acid-activated and modified HC) and BHC-N+ (base-activated and modified HC) to determine the effect of acidic and basic activation. They were characterized by elemental analysis, IR, thermal analysis, zeta potential, N2 adsorption–desorption measurements, and SEM–EDX analysis. The prepared adsorbents displayed MO adsorption due to abundant protonated amine groups. BHC-N+ showed higher MO adsorption than AHC-N+. The result showed that more protonated APTES groups grafted on the surface of HC via NaOH activation. The obtained data had a good fitting with the Langmuir isotherm and pseudo-second-order kinetic. The maximum adsorption capacity of BHC-N+ was 250.38 mg g−1. The adsorption mechanism could be attributed to the electrostatic interactions between MO and protonated amine groups of APTES and hydrogen bonding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号